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The rabbit sequence, which is related to the golden mean and the Fibonacci numbers, is a self-
similar infinite sequence of 0’s and 1’s that occurs in a variety of contexts in physics and mathematics.
For instance, it represents the symbolic dynamics of the nonlinear circle map at the transition from
periodicity to chaos, and it appears in mathematical models of quasicrystals. Here, the block entropy
for the rabbit sequence is derived analytically. It has already been argued that the sequence exhibits
long-range order. Our results confirm this conjecture: The entropy per bit, a direct measure for the
long-range order in symbolic sequences, decays logarithmically. The same behavior has been found
in a heuristic way for the symbolic dynamics generated by the logistic map at the Feigenbaum point.

PACS number(s): 05.45.+b, 05.70.—a

I. INTRODUCTION

In a pioneering work [1], Shannon considered symbolic
sequences generated by stationary Markov processes. A
symbolic sequence is an infinite string of characters cho-
sen from a finite alphabet. Generalizing Shannon’s ideas,
McMillan [2] and Khinchin [3] considered stationary and
ergodic processes. They established the block entropy as
an intuitive and suitable function to measure the “ran-
domness” of a symbolic sequence.

An important measure of randomness is what we now
call the block entropy H,, the uncertainty of a block of
length n within the sequence under consideration:

H,:=— Z_p,-(n) log, pi(n) , (1)

where p;(n) is the probability to find a block of kind 4, if
a block of length n from the sequence is randomly chosen.
In other words, H,, is the minimum average information
(measured in bits) necessary to distinguish one special
block of length n from all the others with the same length.

The uncertainty per symbol of a block of length n is
H™) = H,/n. Also important as a measure for the un-
certainty (or predictability) of a new symbol after the
observation of n symbols emitted by the source is the
difference h,, = H,,+1 — Hp, called “entropy per step.”

To get a measure which is independent of the block
length, i.e., one which describes the source itself, Shan-
non introduced the uncertainty per step for the infinitely
long sequence,

h= lim H™ | (2)

n—oo

”

which McMillan named “entropy of the source.” Mean-
while, Shannon’s theory has been applied to various sym-
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bol sources and sequences to investigate their random-
ness and long-range correlations. Empirically, it has been
found that the block entropy scales according to a power
law, H,, = an* + b, u ~ 0.5, for certain texts [4,5] and
u ~ 0.25 for some classical music [5]. However, other
more complicated laws cannot be excluded.

For chaotic and stochastic strings, h > 0. For Markov
processes of order m, Shannon has shown that the en-
tropy of the source h reaches its limit for m = n.

A variety of scaling behaviors have been found for the
kneading sequences of nonlinear maps [6]. In fully devel-
oped chaos, the scaling is the same as for Markov pro-
cesses without memory (Bernoulli processes), H, ~ n.
If the map generates a dynamic with period p, then
Hjp = const, k > 0.

The most interesting behavior can be found at the bor-
der between periodicity and chaos. The dynamics of the
logistic map approaches chaos via period doubling. At
the Feigenbaum point, H(™ = log,(n)/n for large n [7,8],
i.e., the entropy per bit decays very slowly; the process
has a large memory. The entropy of the source vanishes
in this case.

The binary rabbit sequence can be viewed as the sym-
bolic dynamics associated with the critical circle map
(9,10], which presents an example for the golden-mean
route to chaos. It has already been argued in [10] that
the rabbit sequence exhibits long memory tails: Its power
spectrum is self-similar with sharp spectral peaks, though
the underlying sequence is aperiodic. In the following, an
exact formula for the block entropy will be derived. The
result confirms the conjecture in [10]: For large n, the
entropy per bit is again H(™ =~ log,(n)/n.

II. DEFINITION OF THE RABBIT SEQUENCE

Let b, be a sequence of 1’s and 0’s after r iterations.
Let ab be the concatenation of two strings a and b. Then
a finite rabbit string can be defined by the following re-
cursion:
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bO =0 )
by = 1,
br+1 - brbr—l .
Thus,

bO =0 I
bl = 1,
b2 = 10 5
by = 101,
by = 10110,
bs = 10110101, etc.

The rabbit sequence is the resulting infinite rabbit string.

III. PROPERTIES AND SIGNIFICANCE OF THE
RABBIT SEQUENCE

Many interesting properties of the rabbit sequence and
strings can be found in [10] and [11]. First of all, it is
obvious that the length of the string b; equals the (i4+1)th
Fibonacci number F;,;. The Fibonacci numbers can be
defined by the recursive relation

F, = 0,
=1,
Fr+1 = Fr+Fr—1 .

Therefore the sequence of Fibonacci numbers is
0,1,1,2,3,5,8,13,.... The Fibonacci numbers and the
rabbit strings have a close relation to the golden ratio,
v = 1(v/5—1) = 0.618.. .. There is a simple nonrecursive
formula for the Fibonacci numbers,

-7") . (3)

Thus, for increasing r, the ratio of two successive Fi-
bonacci numbers approaches the golden ratio,

lim F,/Fri1 =7, (4)

It is interesting to note that the rabbit sequence is self-
similar: The same sequence is obtained if all the “1” bits
are replaced by “10,” and all “0” bits are replaced by “1”.
Sometimes this property is used to define the sequence.

Fibonacci introduced the sequence (0,1,1,2,3,5,...) to
describe the growth of a rabbit population. The name
“rabbit sequence” for the related binary sequence was
suggested by Schroeder [11]: After one generation, a
young rabbit (0) becomes an old one (1); an old rabbit
(1) stays old and generates a young one (10).

Interestingly, the sequence of spins with lowest energy
of a one-dimensional antiferromagnetic Ising spin system
is the rabbit sequence if a small magnetic field is applied.
In this case, “0” stands for “spin down” and “1” for “spin
up.” Moreover, there are geometrical methods to gener-
ate the rabbit sequence which exhibit its close relation to
quasicrystals (see [10]).

Finally, the rabbit sequence can also be viewed as the
symbolic dynamics of the critical circle maps [9,10] at the
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transition from periodicity to chaos. A simple example
is

1 .
Opi1 =0, +Q— o sin(276,) .

The transition to chaos occurs for Q = Q2 ~ 0.39. This
parameter corresponds to the Feigenbaum parameter R,
for the logistic map. To obtain the rabbit sequence, we
set &y = 0 and observe the orbit 6;,603,..., and write a
“1” if §; > 0 and “0” if 6; < 0.

IV. TWO IMPORTANT LEMMAS

To analyze the entropy of the rabbit sequence, the fol-
lowing two lemmas will be needed.

Lemma A. The strings b,._1b, and b,.b,._; are identical
except in the last two bits, i.e., in position F,.; — 1 and
F,.; (counting starts from 1). The last two bits are
either 10 or 01.

Proof. The proof will be given by induction for odd r.
The proof for even r is similar.

Obviously, the lemma is correct for r = 1.

Now, from the recursion relation b;4; = b;b;_1, it fol-
lows that

bpb._1 = by_1b,—2 b2
= by_1br—2 by_3br_g br_3

br—3

) r—2
- (n b,_,-) bibo
5
_ (H b,_i) 10
=1

and
by_1b, = b,._; b1 b._2
= br—l br—Zbr—3 by_3b._4
o r—2
= (n b,_i) bobs
=1

r—2
(n b,_,.) o1.
=1

Comparing b,b,_, and b,_1b, completes the proof.

Lemma B. If we discard the first F,. bits of the rabbit
sequence, we obtain a sequence which is the same one as
before, at least up to position 2F, ., with the exceptions
at positions F,.,; and Fr4; — 1.

Proof. The rabbit sequence begins with the string
bryz = bry1brbryy = bp_1bp_2by_1br_1bp_2bryq. If we
discard the first F, bits, we arrive at a sequence that
starts with b,_1b,_1b,_3b,.+1. This is the same as the
first part of the rabbit sequence, with the exceptions at
positions F,._; + F, —1 = F,.;; — 1 and F,, as follows
from Lemma A.

The length of the new string is F,_; + F,_1 + F,_2 +
F,.41 = 2F, ;. This completes the proof for Lemma B.
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V. FREQUENCY OF SPECIFIC BLOCKS

In order to calculate the block entropy of the rabbit
sequence, it is first necessary to know the frequency of a
certain string of length n and kind .

We will first find the frequency G;(n,r) of a string of
length n < F,_; within a finite initial portion of the
rabbit sequence: The first bit of the block i may occur
at position 1 up to position F, of the rabbit sequence.
Then we calculate p; = lim, o [G:(n,7)/F;].

First consider blocks of length n < F,._; with the first
bit of the block at position 1 up to position F,. Consider
the form of the relevant initial part of the rabbit sequence
br+1. Applying Lemmma B we know that F,. —2 0’s and 1’s
within this string repeat after position F,._;. Therefore,
an iteration formula is derived as

Gi(n,r) = Gi(n,7r — 1) + Gi(n,r — 2) with n < Fy._; .
(5)

Indeed, we do not have to be distracted by the fact
that the rabbit sequence only repeats until position P =
F,41 — 2 (Lemma B), since the last bit in the block of
maximal length ny.x = Fr._; — 1 is at position F,, — 1+
Nmax = r+1_2=P-

Now we have to find the possible initial conditions for
(5) to get the desired frequencies. For that purpose we
have to find the frequencies of blocks of length n with
Fs—2 Sn<Fs-1-

To understand the following central theorems and their
proof, it is helpful to follow the general arguments along
the lines of a specific example (F; = 13,n = 5,6,7) which
is illustrated in Fig. 1.

Theorems.

(a) For n = F,_; — 1, all blocks that start at positions
1 to F,_ are mutually different.

(b) For n = F,_5 — 1, the blocks that start at posi-
tions F,_2 + 1 to F,_; (i.e., the next F,_3 blocks) are
repetitions of the first F,_3 blocks.

(c) If the block length n > F,_; — 1 is incremented by
one, n’ = n + 1, the blocks that start at positions 1 to
F,_; are still mutually different. The extended block at
position F, — n’ becomes different from all blocks at a
lower position (marked with “new” in Fig. 1).

(d) This scenario continues as n is incremented until
n = Fy_; — 1. Then all blocks that start at positions 1 to
F,_, are mutually different [this is equivalent to Theorem
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(a) for the next Fibonacci number].

Proof. We will prove the theorems by induction.

Theorem (a) serves as the assumption for the induc-
tion. It is easy to check for n = 1, F, = 5.

Theorem (b) follows immediately from Lemma B.

To prove (c), consider first the block length n = F,_,.
This case is illustrated in Fig. 1 as “scenario for n = 5”.
From (a) and (b) it follows that the block of the first
F,_, — 1 bits of the block at position F,_; has exactly
one repetition at a lower position. (In the example, the
block is “1101” and the repetition occurs at position 3.)
From Lemma B it is clear that the bit at position F,_» of
the new block is different. Thus, the new block (“11011”)
is different from all the blocks at a lower position. If
the length of the block is incremented, the new block
occurs at one position earlier (see “scenario for n = 6”).
Therefore the new blocks occur at position F,_; — n +
F,_; = F; — n. Hence (c) is true.

Finally, as n reaches F,_; — 1, all the blocks from po-
sitions 1 to F,_; are mutually different (see “scenario for
n = 7"). This completes the induction.

It turns out that there are only three different possible
initial conditions for (5) defining three classes of blocks,
all blocks within one class having the same frequency
of occurrence. The possible initial conditions for blocks
with F,_, <n < F, are

(a) Ga(n,s —1) =0, Ga(n,s) =1,
(b) Gp(n,s —1) =1, Gp(n,s) =1,

(c) Ge(n,s — 1) =1, Ge(n,s) =2.

[The trivial case G;(n,s — 1) = G;(n,s) = 0 has been
omitted.] With (5) we see that the frequencies are again
the Fibonacci numbers. Thus the frequencies of different
types of blocks up to position F, are G4(n,7) = Fr_s41,
Gb(ny T) = Fr—s+2’ and GC(n)T) = Fr——s+3'

From the scenario described above and illustrated in
Fig. 1, it is not difficult to derive the number of different
blocks for each type of initial condition (a), (b), and (c).

For type (a) we finda=n— F,_; + 1.

For type (c) wefindc=F,_—a=F,—n—1.

For type (b) we find b=F,_; —c=n—F,_»+ 1.

It is interesting to note that a + b+ c = n + 1. That
is, there are always

block Scenario for n=5 Scenario for n=6 Scenario for n=7
position
1011010110110 1011010110110 101101t011011010
1 10110 new 101101 new 1011010 new
2 01101 new 011010 Dew 0110101 Dew
3 11010 new 110101 Dew 1101011 new
4 10101 Dew 1010 1 ¢ Dew 10t01t10 new
5=F¢ 010 1 1 new 010110 new o101 10 1 new
6 10110 old (same as in position 1) 101101 ald (same as in position 1) 1011011 new!
7 01t 101 old (same as in position 2) 011011 new | 0110110 Dew
8=F ¢ 1101 1 new! 110110 Dew 1101101 oW
9 10110 old 101101 od ito011010 old

FIG. 1. Scenarios for different block lengths (see text).
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Ni=n+1 (6)

different blocks of length n within the rabbit sequence.

VI. BLOCK ENTROPY

The block entropy H, (r) of blocks within the rabbit
sequence up to position F, [from (1)] reads

H,(r) = —apa log; (Pa) — bps log; (ps) — cpc log, (pe)
with
_ Ga(n,7) _ Gp(n,r) _ Ge(n,7)
Pu-T,Pb— F, sy Pec = F.,
By increasing r, we now disclose the probability to find a
block at an arbitrary position within the infinite rabbit
sequence. Consider
— Ga("»"') — Fr—s+1 — Fr—a+1 Fr—s+2 . Fr—l
Pa Fr Fr Fr-a+2 Fr—s+3 Fr

For r > 1, each factor approaches the golden ration ~
[see (4)]. Thus, lim, o ps = ¥°~!. Dealing in the same
way with blocks of type (b) and (c), we get pp — v* 2
and p. — v*~3.

As an example, consider a single bit, i.e., a block of
length 1. In this case, s = 3. The bit “0” is a block of
type (b), i.e., the probability to find a 0 in the rabbit
sequence equals v2. “1” is a block of kind (a). Thus its
probability is «.

For large r the block entropy of the rabbit sequence
becomes

H,=- [a'y(s— 1)+b(s—2) +c(1+'y)(s——3)]'y’_2 log, v ,
with F,_; < n < F,. Evaluation of this equation yields
Ho=—[(n+1)(2y+1)+ (s = 2)(7Fsz + F,1)

—YF41 — Fa] ’7’_2 logy, vy . (7)

For large block lengths, i.e., for large s, this equation
can be simplified. By using

1 1
Fo=—y"7"40|(=- 8
v (n) ®
[see (3)] we find after a few steps of derivations for the
entropy per bit

H® = lig:—’-‘ ) (%) . )

Exactly the same result has been found in a heuristic way
for the kneading sequence of the logistic map [8] (see Fig.
2).
McMillan has shown in [2] that, for stationary and er-
godic sources, the average number of different blocks of
length n is N = 2~ and that the probabilities to find
different blocks become equal for all possible blocks that
might occur. For the rabbit sequence, the latter is not
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Block Entropy per Bit
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FIG. 2. Block entropy per bit H(™ for the symbolic dy-
namics of the circle map (solid line) and of the logistic map
(dashed line, after (8]).

true; the probabilities for the three different classes of
blocks (a), (b), and (c) differ for large block lengths by
a factor v, cf. ¥2. This is because the rabbit sequence
is not stationary. However, from (6) and (9) we see that
N = 28 is still true for large n.

Finally, from (7), we find a simple law for the pre-
dictability of a new bit after the observation of n bits,
hn=Hpy1 — Hy:

h, =—V5 v*~2logyy , Fooi<n<F, .

For large s, this yields the power law h, ~ 1/n. Again,
this is the same scaling as for the dynamics of the logistic
map. The entropy of the source vanishes in both cases.

VII. CONCLUSION

Exact expressions for the block entropy and entropy
per step for the rabbit sequence have been derived. For
n > 1, the entropy per bit H(®) scales exactly as the en-
tropy of the symbolic dynamics generated by the logistic
map at the Feigenbaum point. In both cases, long mem-
ory tails can be observed. This confirms suspicions that
long-range order is typical for the dynamics of systems
at the transition from order to chaos. Moreover, there
is evidence that the entropies of critical dynamics obey
similar scaling laws.
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